|
|
|
浅谈矩阵键盘的设计 发布时间:2024-05-31 |
一、 实验目的
1、了解普通4×4键盘扫描的原理。
2、进一步加深七段码管显示过程的理解。
3、了解对输入/输出端口的定义方法。
二、 实验原理
实现键盘有两种方案:一是采用现有的一些芯片实现键盘扫描;再就是用软件实现键盘扫描。作为一个嵌入系统设计人员,总是会关心产品成本。目前有很多芯片可以用来实现键盘扫描,但是键盘扫描的软件实现方法有助于缩减一个系统的重复开发成本,且只需要很少的CPU 开销。嵌入式控制器的功能能强,可以充分利用这一资源,这里就介绍一下软键盘的实现方案。
图4-12-1 简单键盘电路
通常在一个键盘中使用了一个瞬时接触开关,并且用如图4-12-1 所示的简单电路,微处理器可以容易地检测到闭合。当开关打开时,通过处理器的I/O 口的一个上拉电阻提供逻辑1;当开关闭合时,处理器的/IO 口的输入将被拉低得到逻辑0。可遗憾的是,开关并不完善,因为当它们被按下或者被释放时,并不能够产生一个明确的1 或者0。尽管触点可能看起来稳定而且很快地闭合,但与微处理器快速的运行速度相比,这种动作是比较慢的。当触点闭合时,其弹起就像一个球。弹起效果将产生如图4-12-2 所示的好几个脉冲。弹起的持续时间通常将 维持在5ms∼30ms 之间。如果需要多个键,则可以将每个开关连接到微处理器上它自己的输入端口。然而,当开关的数目增加时,这种方法将很快使用完所有的输入端口。
图4-12-2 按键抖动
键盘上阵列这些开关最有效的方法(当需要5 个以上的键时)就形成了一个如图4-12-3 所示的二维矩阵。当行和列的数目一样多时,也就是方型的矩阵,将产生一个最优化的布列方式(I/O 端被连接的时候)。一个瞬时接触开关(按钮)放置在每一行与线一列的交叉点。矩阵所需的键的数目显然根据应用程序而不同。每一行由一个输出端口的一位驱动,而每一列由一个电阻器上拉且供给输入端口一位。
图4-12-3 矩阵键盘
键盘扫描的实现过程如下:对于4×4键盘,通常连接为4行、4列,因此要识别按键,只需要知道是哪一行和哪一列即可,为了完成这一识别过程,我们的思想是,首先固定输出4行为高电平,然后输出4列为低电平,在读入输出的4行的值,通常高电平会被低电平拉低,如果读入的4行均为高电平,那么肯定没有按键按下,否则,如果读入的4行有一位为低电平,那么对应的该行肯定有一个按键按下,这样便可以获取到按键的行值。同理,获取列值也是如此,先输出4列为高电平,然后在输出4行为低电平,再读入列值,如果其中有哪一位为低电平,那么肯定对应的那一列有按键按下。
获取到行值和列值以后,组合成一个8位的数据,根据实现不同的编码在对每个按键进行匹配,找到键值后在7段码管显示。
三、 实验内容
本实验要求完成的任务是通过编程实现对4X4矩阵键盘按下键的键值的读取,并在数码管上完成一定功能(如移动等)的显示。
四、 实验步骤
1、打开QUARTUSII软件,新建一个工程。
2、建完工程之后,再新建一个VHDL File,打开VHDL编辑器对话框。
3、按照实验原理和自己的想法,在VHDL编辑窗口编写VHDL程序,用户可参照光盘中提供的示例程序。
4、编写完VHDL程序后,保存起来。方法同实验一。
5、对自己编写的VHDL程序进行编译并仿真,对程序的错误进行修改。
6、编译仿真无误后,根据用户自己的要求进行管脚分配。分配完成后,再进行全编译一次,以使管脚分配生效。
7、根据实验内容用实验导线将上面管脚分配的FPGA管脚与对应的模块连接起来。
如果是调用的本书提供的VHDL代码,则实验连线如下:
Clk:FPGA工作时钟信号,接数字时钟CLOCK3,并设为1464HZ。
Kr[0:3]:分别接4×4键盘部分的R1、R2、R3和R4。
Kc[0:3]:分别接4×4键盘部分的C1、C2、C3和C4。
Sa、Sb、Sc:接七段码显示区的Sel0、Sel1和Sel2。
A、B、C、D、E、F、G:接七段码显示区的A、B、C、D、E、F和G
8、用下载电缆通过JTAG口将对应的sof文件加载到FPGA中。观察实验结果是否与自己的编程思想一致。
五、 实验结果与现象
以设计的参考示例为例,当设计文件加载到目标器件后,确认信号连接线已正确连接,按下矩阵键盘的某一个键,则在数码管上显示对应的这个键标识的键值,当再按下第二个键的时候前一个键的键值在数码管上左移一位。
六、 实验报告
1、绘出不同的键值时的数码管的仿真波形,并作说明。
2、根据自己的思路,找一找还有没有其它方法进行键盘的扫描显示。并画出流程图。
1、 将实验原理、设计过程、编译仿真波形和分析结果、硬件测试结果记录下来。 |
|
返回顶部 ↑ |
|
|